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Abstract— This research focused on buckling analysis of thin cylindrical shell under uniform axial compression. The method of solution 
was carried out by the use of direct variational method. The directional method applied in the analysis was the Ritz method. The Ritz 
method was used to determine the buckling stress parameter of the shell. Numerical examples were carried out with wavelength ratio, 
deflection parameters, radius of curvature, internal pressure and thickness of the shell kept constant. The results showed that 100 inclined 
stiffeners have the highest buckling stress value at imperfect ratio of 0.5. While 450 inclined stiffeners have the least buckling stress value 
at imperfect ratio of 0.1. 

Index Terms— Thin cylindrical shell, buckling stress, axial compression, the Ritz, imperfect ratio, direct varional method, deflection theory.   

——————————      —————————— 

1 INTRODUCTION                                                                     
cylindrical shell is generated by moving a straight line 
along a curve while maintaining it parallel to its original 
position A thin cylindrical shell is one that maximum 

ratio of its thickness, h to the radius of curvature, R is less than 
or equal to to   1/20 [1]; [2]. 

A structure may have two kinds of failure, namely material 
failure and form failure. In material failure, the stresses in the 
structure exceed the specified safe limit, resulting in the for-
mation of cracks which cause failure. In form failure, though 
the stresses may not exceed the safe value, the structure may 
not be able to maintain its original form. Here, the structure 
does not fail physically, but may deform to some other shape 
due to intolerable external disturbance. Furthermore, form 
failure depends on the geometry and loading of the structure. 
It occurs when the conditions of loading are such that com-
pressive stresses get introduced. When magnitude of the load 
on the structure is such that the equilibrium changes from sta-
ble to neutral, the load is called the critical load. This phenom-
enon of change of equilibrium is called the buckling of the 
structure [3]; [4]. 

Buckling is often critical in thin-walled or light weight 
members like slender columns, plates and cylindrical shells 
which are subjected to predominantly compressive action. Yet 
the demand for efficient, light weight structures often dictates 
the use of thin walled members.    

 

This demand is prevalent in the design of silos, liquid retain-

ing structures, aerospace and hydrospace structures. The col-
lapse of a structure like cylindrical shell structures, precipitated 
by buckling is often a more serious problem than fracture or 
yielding. Buckling sometime occurs suddenly without warning 
causing a catastrophic failure. Fracture or yielding, on the other 
hand, can also produce failure, but the elasticity of the material 
permits a redistribution of the stresses often allowing a progres-
sive collapse rather than a sudden complete collapse character-
istic of buckling. Once buckling is initiated within the structure, 
there is little or no chance of recovery unless the load is sudden-
ly reduced [4]. Hence, the design of thin cylindrical shells 
should be based on buckling criteria [5]. Buckling behaviour of 
cylindrical shells (in particular, the critical buckling load) is not 
accurately predicted by linear elastic equations due to initial 
imperfections of the shell structure under the action of compres-
sive loads. 

The imperfections include geometrical, structural and load-
ing imperfections. These imperfections affect the load carrying 
capacity of the shell. The most dominant among these imperfec-
tions is geometrical imperfections [6]. The geometrical imperfec-
tion is mostly due to deviation in circularity of the shell during 
its manufacturing. The presence of this imperfection greatly 
reduces the buckling load predicted for a shell of perfect geome-
try. Thus, reliable prediction of buckling strength of these shell 
structures is important, because the buckling failure is cata-
strophic [7]. The buckling effect on the cylindrical shell struc-
tures can be resisted with incorporation of stiffeners in the shell.  
The circumferential stiffeners are known as ring while longitu-
dinal stiffeners are called stringers [8]; [7]. 
  The main objective of this research is buckling analysis of in-
ternally pressurized thin cylindrical shell reinforced with in-
clined stiffeners under uniform axial compression using direct 
variational principle. This was achieved by assuming the dis-
placement function of the shell. Its stress function was obtained 
from the assumed displacement function from the compatibility 
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equation which was carried out by non linear large deflection 
theory.  The expression of the stored energy in the shell as well 
as work done by the external load was obtained using both the 
stress and displacement functions. The large deflection terms, 
effect of imperfection in the strain displacement and the exter-
nal load were considered in the formulation of total strain ener-
gy of the imperfect shell. The resulted total strain energy was 
minimized using the Ritz method to determine the equation for 
obtaining the buckling stress values of the shell. 

 

1.1 Direct Variational Methods 
These are methods which (bypassing the derivation of Eu-

ler equations) go directly from a variational statement of the 
problem to the solution. These methods use the following 
principles: Principle of Conservation of Energy, Principle of 
Virtual Work and Principle of Minimum Potential Energy for 
determining numerical fields of unknown functions (i.e. dis-
placement, internal forces and moments) avoiding the differ-
ential equations of the plate or shell theory. This method is 
also called Energy Method. The most widely used ones is the 
Ritz method [9], [10]. 

2.0 ENERGY EXPRESSION FOR THE CYLINDRICAL SHELL 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
Fig. 1: (a) thin cylindrical shell under axial compression and 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) Coordinates and Displacement Components of a point on 
the Middle- surface of the shell. 
Let x and y be the axial and circumferential axis in the median 

surface of the undeformed cylindrical shell as shown in Fig. 
1(a), w is the total radial deflection and w0 represents the ini-
tial radial deflection. 
From the theory of elasticity, the strain – displacement rela-
tions of the cylindrical shell are as expressed in Eqns. (1a), (1b) 
and (1c) respectively.  
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The stresses and strains in the middle surface of the shell in 
the case of plane stress are related to each other by the follow-
ing equations. 
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Substituting Eqns. (1a), (1b) and (1c) into their related equa-
tions in Eqns. (2a), (2b) and (2c), the followings were obtained; 
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For plane stress state, the non-zero components of stress ten-
sor, 
𝜎𝑥 ,𝜎𝑦 ,𝜎𝑥𝑦 satisfied the following equilibrium using Airy 
stress function F. 

𝜎𝑥 =
𝜕2𝐹
𝜕𝑦2

;𝜎𝑦 =
𝜕2𝐹
𝜕𝑥2

;  𝜎𝑥𝑦 =
−𝜕2𝐹
𝜕𝑥𝜕𝑦

                             (4) 

 

Eliminating variables u and v in Eqns. (3) and (4), the relation 
between stress function F and radial component displacement, 
w was expressed as follows: 

Compressive load 

Compressive load 

 

 

 

(a) 

L 

(b) 

R x, u 

L 
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Where ∇2= ∂2

∂x2
+ ∂2

∂y2
  is called Laplace operator. 
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For simplicity, 𝑤  was assumed to be proportional to  𝑤0. 

Thus, 

Л =
𝑤0

𝑤
                                          (6) 

Where Л is called imperfection ratio and it is independent 
of x and y. 
With the expression from Eqns (5b) and (6), the compatibility 
equation was expressed as; 
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Where ∇4is called Bilharmonic operator. 
Equation (7) is the compatibility equation of perfect thin cy-
lindrical shell. 
The strain energy of isotropic medium referred to arbitrary 
orthogonal coordinates was expressed as: 
𝑈 = 1

2∭ 𝜎𝑖𝑗𝜖𝑖𝑗𝑑𝑣𝑜𝑙 = 1
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𝜎𝑥𝑧2𝜖𝑥𝑧+𝜎𝑦𝑧2𝜖𝑦𝑧𝑑𝑥𝑑𝑦𝑑𝑧        (8a) 
Substituting Eqns. 1(a-c), 2(a-c), 3(a-c) and 4 into Eqn. (8a), 

we have expressions stated in Eqns. (8) and (9) respectively: 
i. The extensional strain energy in the shell was ex-

pressed as; 
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ii. The work of the external force applied at the ends of 
the shell 

The work of the external force applied at the ends of the 
shell is the product of the applied compressive force and the 
change in length of the shell. 

𝑈𝑐 =  𝑃𝑐 ∗ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠ℎ𝑒𝑙𝑙      (9𝑎) 
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iii The potential due to the internal pressure, p 
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 The bending strain energy of stiffeners. 
 Considering Fig. 2, the stiffeners were assumed parallel with 
the 𝑦1, 𝑦2 coordinates lines and the principal direction of the 
cylindrical shell coincide with x, y, lines   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: The coordinate system of the stiffeners of the cylindrical 
shells and stiffeners 
The subscript k was used for 𝑘𝑡ℎstiffnener, which is inclined 
at an angle,  ɤ1with generator of the cylinders and is parallel 
with 𝑦1-line and normal to  𝑦2ʹ '– line. Hence, the bending 
strain energy in the 𝑘𝑡ℎstiffener is    
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Where 𝑁𝑘denotes the number of the stiffeners in  ɤ1– direc-
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tion. 
𝐸𝑘𝐼𝑘represents the flexural rigidity of the 𝑘𝑡ℎstiffener. The 

limit 𝐿𝑘is the length of the stiffener in ɤ1– direction. 
Similarly, the bending strain energy in the 𝑗𝑡ℎstiffener which 
is parallel with 𝑦2– line and nomal to 𝑦1′  - line as shown in Fig. 
2. 
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The subscript j was used for 𝑗𝑡ℎ  stiffener which is inclined 

at angle of ɤ2with the generator of the cylinder. Where 𝑁𝑗 is 
the number of the stiffeners in ɤ2– direction. 
𝐸𝑗𝐼𝑗   represents the flexural rigidity of the 𝑗𝑡ℎ stiffeners. 

The limit 𝐿𝑗is length of the stiffener in ɤ2– direction. 
v. The torsion strain energy of the  𝑘𝑡ℎand 𝑗𝑡ℎ   stiffen-
ers were 
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Where G J represents the torsional rigidity of stiffeners, with 
subscript j representing stiffeners in ɤ2– direction and sub-
script k is for stiffeners inɤ1- direction. In this analysis, the 
inclined angles, ɤ1and ɤ2 are considered in axial symmetry 
for inclined stiffeners. 
According to Von and Tsien [9], the deflection shape of the 
cylindrical shell subject to axial compression was assumed as: 
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Where m and   n are the numbers of waves in axial and cir-
cumferential directions respectively. The corresponding stress 
function for cylindrical shell subjected to compressive force 
acting concentrically: 
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The coefficients 𝑎11, 𝑎22, 𝑎02, 𝑎20, 𝑎31, 𝑎13 in Eqn. (16) were de-
termined in terms of  𝑓2, 𝑓3, and  𝑓4 from the compatibility 
equation as expressed in Eqns. 17(a-f): 
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 𝜇�   𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ 𝑟𝑎𝑡𝑖𝑜 𝑖𝑛 𝑎𝑥𝑖𝑎𝑙 𝑎𝑛𝑑  
𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 
 

3 EXPRESSION OF TOTAL POTENTIAL FOR INTERNALLY 
PRESSURIZED THIN CYLINDRICAL SHELL UNDER 
AXIAL COMPRESSION 

The total potential of the system, ∏ is the sum of the strain 
energies and it is expressed as follows, 
∏ = 𝑈𝑒 + 𝑈𝑐 + 𝑈𝑃  +   𝑈𝑏,𝑘 + 𝑈𝑏,𝑗 + 𝑈𝑃 + 𝑈𝑇,𝑘 + 𝑈𝑇,𝑗    (18) 

3.1 Minimization of Total Potential for internally 
pressurized thin Cylindrical Shell under Axial 
Compression 
The total potential energy of internally pressurized thin cylin-
drical subjected to axial compression must be minimum when 
the structure is in equilibrium.  
The variation of potential with respect to each of the arbitrary 
parameters vanished for equilibrium, this gave rise to Eqn. 
(19):  
𝜕∏�
𝜕𝜑2

= 0,
𝜕∏�
𝜕𝜑3

= 0,
𝜕∏�
𝜕𝜑4

= 0                    (19) 

Evaluation of 𝜕∏�

𝜕𝜑2
= 0,   𝜕∏

�

𝜕𝜑3
= 0, 𝜕∏�

𝜕𝜑4
= 0    yielded Eqns 

(20) – (22): 

𝜙1
𝛽

1 − Л
= 𝛬1 + 𝛽2(𝛬2 + 𝛬3𝜆 + 𝛬4𝜆2) + φ2

2𝛬5               (20) 

𝜙2
𝛽

1 − Л
= 𝐵1 + 𝛽2𝐵2𝜆2 + φ2

2 �B3 +
B4

λ
�                      (21) 

𝜙3
𝛽

1 − Л
= ℵ1 + 𝛽2(ℵ2 + ℵ3𝜆2) + φ2

2 �ℵ4 +
ℵ5
λ
�           (22) 

From Eqn. (20) the notations used were defined as follows; 
𝜙1 = 𝜎�𝑐 − �̅�2𝑃 �                                      (23𝑎) 

𝛬1 =
(1 + �̅�2)2

12(1 − 𝜇2) + 𝛹1                          (23𝑏) 
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𝛬2 =
1

(1 + �̅�2)2                                 (23𝑐) 

 

𝛬3 = −�
2(2 + Л)(1 + λ1)

(1 + �̅�2)2 +
𝜆1
2 �

�̅�2                  (23𝑑) 

𝛬4 = 4(1 + Л)�̅�4 �
(1 + λ1)2

(1 + �̅�2) +
𝜆1

(9 + �̅�2)2

+
1

(1 + 9�̅�2)2
�       (23𝑒) 

𝛬5 = (1 + Л)�
1 + �̅�4

16 �                            (23𝑓) 

𝛹1 = �
𝐸�𝑘𝐼�̅�𝐿�𝑘

2

𝑁𝑘

𝑘=1

(C1
4 + 6𝜇�2C1

2S1
2 + 𝜇�4S1

4) + �
𝐸�𝑗𝐼�̅�𝐿�𝑗

2

𝑁𝑗

𝑗=1

(C2
4

+ 6𝜇�2C2
2S2

2  + 𝜇�4S2
4

+ �
𝐸�𝑘𝐼�̅�𝐿�𝑘

4

𝑁𝑘

𝑘=1

[(𝐶1 + 𝜇�𝑆1)2(𝑆1 − 𝜇�𝐶1)2

+ (𝐶1 − 𝜇�𝑆1)2(𝑆1 + 𝜇�𝐶1)2]

+ �
𝐸�𝑗𝐼�̅�𝐿�𝑗

4

𝑁𝑗

𝑗=1

[(𝐶2 + 𝜇�𝑆2)2(𝑆2 − 𝜇�𝐶2)2

+ (𝐶2 − 𝜇�𝑆2)2(𝑆2 + 𝜇�𝐶2)2]    (23𝑔) 

 
The notations used in Eqn. (21) were defined as follows; 
𝜙2 = −�̅�2𝑃�                           (24𝑎) 

𝐵1 =
�̅�4

3(1 − 𝜇2) + 𝛹2              (24𝑏) 

𝐵2 = (1 + Л)
2�̅�4

(1 + �̅�2)2 𝜆1
2            (24𝑐) 

𝐵3 = (1 + Л) �
1

(1 + 9�̅�2)2 +
(1 + 𝜆1)

(1 + �̅�2)2�
�̅�4

2
          (24𝑑) 

𝐵4 = −
�̅�2

4(1 + �̅�2)2                             (24𝑒) 

 

𝛹2 = �𝐸�𝑘𝐼�̅�𝐿�𝑘

𝑁𝑘

𝑘=1

S14�̅�4 + �𝐸�𝑗𝐼�̅�𝐿�𝑗

𝑁𝑗

𝑗=1

S2 
4 �̅�4 + ��̅�𝑘𝐽�̅�𝐿�𝑘

𝑁𝑘

𝑘=1

C12S12�̅�4

+ ��̅�𝑗𝐽�̅�𝐿�𝑗

𝑁𝑗

𝑗=1

C22S22�̅�4  (3.46𝑓) 

From Eqn. (22), the notation used as obtained from Eqn. 
(3.41) were defined as follows; 
𝜙3 = 𝜎�𝑐                                  (25𝑎) 

ℵ1 =
1

3(1 − 𝜇2) + 𝛹3                  (25𝑏) 

ℵ2 =
1
4

                                               (25𝑐) 

ℵ3 = (1 + Л)
2�̅�4

(1 + �̅�2)2                       (25𝑑) 

 
 

ℵ4 = (1 + Л)
�̅�4

2
�

1
(9 + �̅�2)2

+ �1 +
1
𝜆1
�

1
(1 + �̅�2)2�          (25𝑒) 

ℵ5 = − �
1

(1 + �̅�2)2 +
1 + Л

8
�
�̅�2

4𝜆1
                 (25𝑓) 

 

𝛹3 = �𝐸�𝑘𝐼�̅�𝐿�𝑘

𝑁𝑘

𝑘=1

C14 + �𝐸�𝑗𝐼�̅�𝐿�𝑗

𝑁𝑗

𝑗=1

C2 
4 + ��̅�𝑘𝐽�̅�𝐿�𝑘

𝑁𝑘

𝑘=1

C12S12

+ �𝐸�𝑗𝐼�̅�𝐿�𝑗

𝑁𝑗

𝑗=1

C22S22   (25𝑔) 

Where 
𝜆 = φ3

𝛽
  ,    𝜆1 = φ4

φ3
    , C1 = cosɤ1 , C2 = cosɤ2 , S1 =

sin ɤ1 ,   S2 = sin ɤ2  ,𝑃� = 𝑃𝑅2

𝐸ℎ2
  and 𝜎�𝑐 = 𝜎𝑐𝑅

𝐸ℎ
            

Eliminating φ_2 and β from Eqns. (3.42), (3.43) and (3.44), 
the following equation was obtained: 
𝑀1𝜎�𝑐2 + 𝑀2𝜎�𝑐 + 𝑀3 = 0                   (26) 

where 

𝑀1 =
1

(1 − Л2)
�
𝜂2𝜂3
𝜛3
2 �ℵ4 +

ℵ5
𝜆
− 𝛬5�

2

+
𝜛2

𝜛3
�𝐵3 +

𝐵4
𝜆
�
2

− �
𝜛2𝜂3
𝜛3
2 +

𝜂2
𝜛3
� �ℵ4 +

ℵ5
𝜆
− 𝛬5� �𝐵3

+
𝐵4
𝜆
��       (27𝑎) 

𝑀2 = −  
𝑃��̅�2

(1 − Л2)
�

2𝜂2𝜂3
𝜛3

2 �ℵ4 +
ℵ5
𝜆
� �ℵ4 +

ℵ5
𝜆
− 𝛬5�

+
2𝜛2

𝜛3
�𝐵3 +

𝐵4
𝜆
− 𝛬5�

− �
𝜛2𝜂3
𝜛3
2 +

𝜂2
𝜛3
� �2 �𝐵3 +

𝐵4
𝜆
� �ℵ4 +

ℵ5
𝜆
�

+ 𝛬52

− 𝛬5 �𝐵3 +
𝐵4
𝜆

+ ℵ4 +
ℵ5
𝜆
���         (27𝑏) 

𝑀3 =
𝑃��̅�4

(1 − Л2)
�
𝜂2𝜂3
𝜛3
2 �ℵ4 +

ℵ5
𝜆
�
2

+
𝜛2

𝜛3
�𝐵3 +

𝐵4
𝜆
− 𝛬5�

2

− �
𝜛2𝜂3
𝜛3
2 +

𝜂2
𝜛3
� �ℵ4 +

ℵ5
𝜆
�

+ �𝐵3 +
𝐵4
𝜆
− 𝛬5�� +

𝜂32𝜛2
2

𝜛3
2 −

2𝜂2𝜂3𝜛2

𝜛3

+ 𝜂22          (27𝑐) 

Where 𝜂2, and 𝜂3    were defined as follows as derived:  
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𝜂2 = 𝛬1 �𝐵3 +
𝐵4
𝜆
� − 𝐵1𝛬5                                   (28𝑎) 

𝜂3 = (𝛬2 + 𝛬3𝜆 + 𝛬4𝜆2) �𝐵3 +
𝐵4
𝜆
� − 𝐵2𝛬5𝜆2     (28𝑏) 

Also, 𝜛2 and 𝜛3 were defined as follows: 

𝜛2 = 𝛬1 �ℵ4 +
ℵ5
𝜆
� − ℵ1𝛬5                          (29𝑎) 

𝜛3 = (𝛬2 + 𝛬3𝜆 + 𝛬4𝜆2) �ℵ4 +
ℵ5
𝜆
�

− (ℵ2 + ℵ3𝜆2)𝛬5               (29𝑏) 
Equation (26) is the governing equation for determining the 

critical buckling stress of an internally pressurized thin cylin-
drical shell loaded with axial compressive force and reinforced 
with inclined stiffeners. 

4 RESULTS AND DISCUSSIONS 
4.1 RESULTS 
NUMERICAL EXAMPLES 
The numerical analysis of this type of cylindrical shell was done by taking the following assumptions: 𝐸�𝑘𝐼�̅�𝐿�𝑘 = 𝐸�𝑗𝐼�̅�𝐿�𝑗 ,  
�̅�𝑘𝐽�̅�𝐿�𝑘 =  �̅�𝑗𝐽�̅�𝐿�𝑗, ɤ1  =  ɤ2 =  ɤ (𝑓𝑜𝑟 ɤ = 100, 200, 300, 400, 450, 500, 600), 𝜆 =   𝜆1,  𝑚 = 5,  �̅� = 1, ℎ = 0.05 𝑚𝑒𝑡𝑟𝑒, 𝑃� = 2 𝑎𝑛𝑑 𝑅 =
2 𝑚𝑒𝑡𝑟𝑒𝑠.   Using the governing equation in Eqn (43) and the notation described from Eqn (27a) to Eqn (29b), the following data 
shown in Table 1 were obtained for different imperfect ratio, Л.
 

Table 1: Values of Buckling Stress Parameter, 𝝈�𝒄 for different imperfect ratio for internally pressurized thin cylinders                     

reinforced with inclined stiffeners subjected to uniform axial compression 

IMPER-
FECT RA-
TIO, Л 
 

BUCKLING STRESS PARAMETER, 𝝈�𝒄  OF STIFFENERS AT DIFFERENT ANGLES 

100 200 300 400 450 500 600 

0 5.6624 4.0054 1.2553 0.3941 0.3394 0.4505 1.1069 
0.1 7.5788 4.6957 1.4670 0.4122 0.3575 0.5122 1.3826 
0.2 8.0688 5.3574 1.7232 0.4434 0.3795 0.5708 1.6531 
0.3 8.4725 5.9337 1.9976 0.4838 0.4032 0.6224 1.9030 
0.4 8.6372 6.3810 2.2657 0.5310 0.4274 0.6629 2.1060 
0.5 8.6698 6.6607 2.4493 0.5835 0.4517 0.6872 2.2265 
0.6 8.4874 6.7322 2.6652 0.6395 0.4756 0.6894 2.2107 
0.7 8.0403 6.5440 2.7236 0.6971 0.499 0.6626 2.0012 
0.8 7.2397 6.0177 2.6265 0.7535 0.5217 0.5990 1.5520 
0.9 5.9043 5.0061 2.3134 0.8055 0.5435 0.4902 0.8552 

 

4.2 DISCUSSION OF RESULTS 
The data in Table1 showed that as imperfect ratio of stiffeners 
inclined at 100 and 600 respectively increases from 0.1 to 0.5, its 
buckling stress parameter increases. For stiffeners inclined at 
200 and 500 respectively, there was progressive increase of 
their buckling stress parameter from imperfect ratio of 0.1 to 
imperfect ratio of 0.6. While, stiffeners inclined at 300 have 
progressive increase of their buckling stress parameter from 
imperfect ratio of 0.1 to imperfect ratio of 0.7. 
However, stiffeners inclined at 400 and 450 respectively have 
progressive increase of their buckling stress parameter from 
imperfect ratio of 0.1 to imperfect ratio of 0.9.  Buckling stress 
parameter is least at 450 inclined stiffeners and maximum at 
100 inclined stiffeners for all imperfect ratios considered. The 
results in Table 1 also showed that 100 inclined stiffeners have 
maximum critical buckling stress at imperfect ratio of 0.5, 
while 450 inclined stiffeners have the least critical buckling 
stress at imperfect ratio of 0.1.  

5 CONCLUSION 
With reference to the results obtained in this research, 
engineers designing cylindrical shell structures with the aim 
of providing resistance to buckling would be able to select 
suitable inclined stiffeners for the structure under uniform 
axial compression. 
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Notations Meaning 

 

∈𝑥, ∈𝑦 Strains in x and y 

𝑤0 Initial deflection 
𝑤 Total radial deflection 
E Young’s modulus of elasticity of the shell 
𝐷 Flexural rigidity of the shell 
ℎ Thickness of the shell 
𝜇 Poisson ratio 
Л Imperfect ratio 
𝑅 Radius of the cylindrical shell 
F Airy’s stress function 
𝐸𝑗 Young’s modulus of elasticity of  jth stiffeners 
𝐸𝑘 Young’s modulus of elasticity of  kth stiffeners 
𝐺𝑘 Shear modulus of kth stiffeners 
𝐺𝑗 Shear modulus of jth stiffeners 
𝐼𝑗 moment of inertia of  jth  stiffeners 
𝐼𝑘 moment of inertia of  kth  stiffeners 
𝐽𝑘 polar moment of inertia of  kth  stiffeners 
𝐽𝑗 polar moment of inertia of  jth  stiffeners 
𝐿 Length of the cylindrical shell 
𝐿𝑘 Length of  kth stiffeners 
𝐿𝑗 Length of  jth stiffeners 
𝐿�𝐽 Dimensionless length of  jth stiffeners 
𝐿�𝑘 Dimensionless length of  kth stiffeners 
𝐸�𝑘 Dimensionless Young’s modulus of elasticity of  kth 

stiffeners 
𝐸�𝑗 Dimensionless Young’s modulus of elasticity of  jth 

stiffeners 
�̅�𝑗 Dimensionless shear modulus of jth stiffeners 

�̅�𝑘 Dimensionless shear modulus of kth stiffeners 
𝐼�̅� Dimensionless moment of inertia of  jth  stiffeners 
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𝐼�̅� Dimensionless moment of inertia of  kth  stiffeners 
𝐽�̅� Dimensionless polar moment of inertia of  jth  stiffen-

ers 
𝐽�̅� Dimensionless polar moment of inertia of  kth  stiffen-

ers 
𝑚 Number of waves in axial direction 
𝑛 Number  of waves in circumferential direction 
ɤ1 Inclination angle of the Kth stiffeners parallel with y1- 

line  and normal to y21-line 
ɤ2 Inclination angle of the jth stiffeners parallel with y2- 

line  and normal to y11-line 
𝑈𝑇,𝑗 Torsional  strain energy for jth stiffeners inclined at 

angle, ɤ2 
𝑈𝑇,𝑘 Torsional  strain energy for Kth stiffeners inclined at 

angle, ɤ1 
𝑈𝑏,𝑗 Bending strain energy for jth stiffeners inclined at an-

gle, ɤ2 
𝑈𝑏,𝑘 Bending strain energy for Kth stiffeners inclined at 

angle, ɤ1 
𝑈𝑐 Strain energy due to external force applied at the ends 

of the shell 

𝑈𝑒 Extensional strain energy in the shell 
𝑈𝑃 Strain energy due to internal pressure 
𝑈𝑚 Potential due to edge bending due to application of 

eccentric loading 
𝜎𝑏 Bending stress 
∇4 Biharmonic operator 
∇2 Laplace operator 
𝑃 Internal pressure 
�̅� Wavelength ratio 
𝑃� Dimensionless internal pressure 

𝑢, 𝑣,𝑤 Components of displacements in x, y, z directions 
𝑥, 𝑦, 𝑧 Orthogonal coordinates on median  surface of the 

shell 
𝛽 Dimensionless parameter that connect h, R and m 

u, v, w Components of displacements in x, y, z directions 

x, y, z Orthogonal coordinates on median  surface of the 

shell 
𝛽 Dimensionless parameter that connect h, R and m 
C1 Cosine of angle ɤ1 
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S1 Sine of angle ɤ1 
C2 cosine of angle ɤ2 
S2 Sine of angle ɤ2 

𝜆 ,  𝜆1 Deflection parameters 
𝑁𝐾 Number of stiffeners in ɤ1 -direction 
𝑁𝐽 

∏ 

∏�  
U� 
 

Number of stiffeners in ɤ2 –direction 

Total strain energies 

Non-dimensional total strain energies 

Non-dimensional strain energy 
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